From Galois to Hopf Galois: Theory and Practice

نویسندگان

  • T. Crespo
  • M. Vela
چکیده

Hopf Galois theory expands the classical Galois theory by considering the Galois property in terms of the action of the group algebra k[G] on K/k and then replacing it by the action of a Hopf algebra. We review the case of separable extensions where the Hopf Galois property admits a group-theoretical formulation suitable for counting and classifying, and also to perform explicit computations and explicit descriptions of all the ingredients involved in a Hopf Galois structure. At the end we give just a glimpse of how this theory is used in the context of Galois module theory for wildly ramified extensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

On the Galois correspondence for Hopf Galois structures

We study the question of the surjectivity of the Galois correspondence from subHopf algebras to subfields given by the Fundamental Theorem of Galois Theory for abelian Hopf Galois structures on a Galois extension of fields with Galois group Γ, a finite abelian p-group. Applying the connection between regular subgroups of the holomorph of a finite abelian p-group (G,+) and associative, commutati...

متن کامل

On the Galois Correspondence Theorem in Separable Hopf Galois Theory

In this paper we present a reformulation of the Galois correspondence theorem of Hopf Galois theory in terms of groups carrying farther the description of Greither and Pareigis. We prove that the class of Hopf Galois extensions for which the Galois correspondence is bijective is larger than the class of almost classically Galois extensions but not equal to the whole class. We show as well that ...

متن کامل

Coalgebra-galois Extensions from the Extension Theory Point of View

Coalgebra-Galois extensions generalise Hopf-Galois extensions, which can be viewed as non-commutative torsors. In this paper it is analysed when a coalgebra-Galois extension is a separable, split, or strongly separable extension.

متن کامل

Galois corings from the descent theory point of view

We introduce Galois corings, and give a survey of properties that have been obtained so far. The Definition is motivated using descent theory, and we show that classical Galois theory, Hopf-Galois theory and coalgebra Galois theory can be obtained as a special case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015